

Methane emissions from the early rice paddy fields of Qingyuan Region in China

Wanhui Ren¹, Li Xu², Jinluan Liu³, Ning Yang⁴, M.A.K., Khalil⁵ and R. Rasmussen⁶

¹ Department of Electronic Engineering, NIM, Nanjing 210044, China

² National Climate Center CMA Rejiing 100081 China

² National Climate Center, CMA, Beijing 100081, China

³ Guangdong Meteorological Bureau, 510080, Guangzhou, China

⁴ Qingyuan Meteorological Bureau, 511515, Guangdong Province, China

⁵ Department of Physics, Portland State University, Partland, Oregon, 97207-0751, USA

⁶ Atmospheric Chemistry Environmental and Biomoleculr Systems, Oregon Graduate Institute, Oregon, USA

Outline

- **◆**Introduction
- Experimental design and methods
- Results and analysis
- ◆The DNDC model

Introduction

- Methane is one of the most important greenhouse gasses in the atmosphere with its contribution to global warming just lower than CO₂
- Among the manmade sources of methane, rice field is the largest source (Crutzen, 1991)
- Rice area of China accounts for about 22% of total rice area in the world

Experimental design and methods

- The experimental site is located in the village of Longjing of Qingyuan city in the Guangdong province of China
- We use water-sealed mobile <u>chamber</u> to measure methane emission flux
- Samples are analyzed using a gas chromatograph equipped with a flame ionization detector (GC/FID) in the laboratory of Qingyuan Meteorology Bureau

Results and analysis

 The seasonal variation of methane emission flux in this experiment is basic three-peak mode.

Fig. 2 the seasonal variation of methane emission from the early rice field

Fig. 3 the record of fertilizing and methane emission flux

 The average methane emission flux of the whole early rice growing season was 4.38mg/m²·h. When the water level is about 2cm, there is often a corresponding peak of methane flux. We should avoid shallow water level of near 2cm or choose intermittent irrigation in order to decrease methane emission from rice field.

Fig. 4 the relation between methane emission and water level of rice field

Fig. 5 the relation between methane emission flux from the early rice field and Eh value

- The DNDC (denitrification and decomposition) model is developed by the Institute for the Study of Earth, Oceans, and Space (EOS), University of New Hampshire (UNH).
- The DNDC model consists of two components.

The structure of the DNDC model

Fig. 6 the compare of the observed value and the simulated value

The end, Thanks!

National Climate Center 国家气候中心

The pictures of collecting samples

National Climate Center 国家气候中心

Fig. 1 The map of experimental locations in Qingyuan, Guangdong Province of China

